Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120261, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354608

RESUMO

The future of reactive nitrogen (N) for subtropical lowland rice to be characterised under diverse N-management to develop adequate sustainable practices. It is a challenge to increase the efficiency of N use in lowland rice, as N can be lost in various ways, e.g., through nitrous oxide (N2O) or dinitrogen (N2) emissions, ammonia (NH3) volatilization and nitrate (NO3-) leaching. A field study was carried out in the subsequent wet (2021) and dry (2022) seasons to assess the impacts of different N management strategies on yield, N use efficiency and different N losses in a double-cropped rice system. Seven different N-management practices including application of chemical fertilisers, liquid organic fertiliser, nitrification inhibitors, organic nutrient management and integrated nutrient management (INM) were studied. The application of soil test-based neem-coated urea (NCU) during the wet season resulted in the highest economic yield, while integrated nutrient management showed the highest economic yield during the dry season. Total N losses by volatilization of NH3, N2O loss and leaching were 0.06-4.73, 0.32-2.14 and 0.25-1.93 kg ha-1, corresponding to 0.06-5.84%, 0.11-2.20% and 0.09-1.81% of total applied N, respectively. The total N-uptake in grain and straw was highest in INM (87-89% over control) followed by the soil test-based NCU (77-82% over control). In comparison, recovery efficiency of N was maximum from application of NCU + dicyandiamide during both the seasons. The N footprint of paddy rice ranged 0.46-2.01 kg N-eq. t-1 during both seasons under various N management. Ammonia volatilization was the process responsible for the largest N loss, followed by N2O emissions, and NO3- leaching in these subtropical lowland rice fields. After ranking the different N management practices on a scale of 1-7, soil test-based NCU was considered the best N management approach in the wet year 2021, while INM scored the best in the dry year 2022.


Assuntos
Oryza , Nitrogênio/análise , Agricultura/métodos , Amônia/análise , Solo , Fertilizantes/análise , Óxido Nitroso/análise
2.
Plant Sci ; 334: 111749, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37244501

RESUMO

Proline-rich extensin-like receptor kinases (PERKs) play a crucial role in a wide range of biological processes in plants. In model plants like Arabidopsis, the PERK gene family has been well investigated. Conversely, no information available on the PERK gene family and their biological functions largely remained unknown in rice. This study analyzed the basic physicochemical properties, phylogeny, gene structure, cis-acting elements, Gene ontology (GO) annotation and protein-protein interaction of OsPERK gene family members using various bioinformatics tools based on the whole-genome data of O. sativa. Thus, in this work, 8 PERK genes in rice were identified, and their roles in plant development, growth, and response to various stresses were studied. A phylogenetic study revealed that OsPERKs are grouped into seven classes. Chromosomal mapping also displayed that 8 PERK genes were unevenly distributed on 12 chromosomes. Further, the prediction of subcellular localization indicated that OsPERKs were mainly located at the endomembrane system. Gene structure analysis of OsPERKs has shown a distinctive evolutionary path. In addition, synteny analysis exhibited the 40 orthologous gene pairs in Arabidopsis thaliana, Triticum aestivum, Hordeum vulgare and Medicago truncatula. Furthermore, Ka to Ks proportion shows that most OsPERK genes experienced resilient purifying selection during evolutionary processes. The OsPERK promoters contained several cis-acting regulatory, which are crucial for plant development processes, phytohormone signaling, stress, and defense response. Moreover, the expression pattern of OsPERK family members showed differential expression patterns in different tissues and various stress conditions. Taken together, these results provide clear messages for a better understanding the roles of OsPERK genes in various development stages, tissues, and multifactorial stress as well as enriched the related research of OsPERK family members in rice.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Genoma de Planta/genética , Filogenia , Estresse Fisiológico/genética , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica , Perfilação da Expressão Gênica/métodos
3.
J Fungi (Basel) ; 8(4)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35448601

RESUMO

Sheath blight of rice is a destructive disease that could be calamitous to rice cultivation. The significant objective of this study is to contemplate the proteomic analysis of the high virulent and less virulent isolate of Rhizoctonia solani using a quantitative LC-MS/MS-based proteomic approach to identify the differentially expressed proteins promoting higher virulence. Across several rice-growing regions in Odisha, Eastern India, 58 Rhizoctonia isolates were obtained. All the isolates varied in their pathogenicity. The isolate RS15 was found to be the most virulent and RS22 was identified as the least virulent. The PCR amplification confirmed that the RS15 and RS22 belonged to the Rhizoctonia subgroup of AG1-IA with a specific primer. The proteomic information generated has been deposited in the PRIDE database with PXD023430. The virulent isolate consisted of 48 differentially abundant proteins, out of which 27 proteins had higher abundance, while 21 proteins had lower abundance. The analyzed proteins acquired functionality in fungal development, sporulation, morphology, pathogenicity, detoxification, antifungal activity, essential metabolism and transcriptional activities, protein biosynthesis, glycolysis, phosphorylation and catalytic activities in fungi. A Quantitative Real-Time PCR (qRT-PCR) was used to validate changes in differentially expressed proteins at the mRNA level for selected genes. The abundances of proteins and transcripts were positively correlated. This study provides the role of the proteome in the pathogenicity of R. solani AG1-IA in rice and underpins the mechanism behind the pathogen's virulence in causing sheath blight disease.

4.
Sci Rep ; 12(1): 4089, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260690

RESUMO

We studied variation in adaptive traits and genetic association to understand the low P responses, including the symbiotic association of arbuscular mycorrhizal (AM) fungal colonization in Oryza species (O. sativa, O. nivara, and O. rufipogon). In the present experiment, we performed the phenotypic variability of the morphometric and geometric traits for P deficiency tolerance and conducted the association studies in GLM and MLM methods. A positive association between the geometric trait of the top-view area and root traits suggested the possibility of exploring a non-destructive approach in screening genotypes under low P. The AMOVA revealed a higher proportion of variation among the individuals as they belonged to different species of Oryza and the NM value was 2.0, indicating possible gene flow between populations. A sub-cluster with superior-performing accessions had a higher proportion of landraces (42.85%), and O. rufipogon (33.3%) was differentiated by four Pup1-specific markers. Association mapping identified seven notable markers (RM259, RM297, RM30, RM6966, RM242, RM184, and PAP1) and six potential genotypes (IC459373, Chakhao Aumbi, AC100219, AC100062, Sekri, and Kumbhi Phou), which will be helpful in the marker-assisted breeding to improve rice for P-deprived condition. In addition, total root surface area becomes a single major trait that helps in P uptake under deficit P up to 33% than mycorrhizal colonization. Further, the phenotypic analysis of the morphometric and geometric trait variations and their interactions provides excellent potential for selecting donors for improving P-use efficiency. The identified potential candidate genes and markers offered new insights into our understanding of the molecular and physiological mechanisms driving PUE and improving grain yield under low-P conditions.


Assuntos
Oryza , Humanos , Oryza/genética , Fenótipo , Fósforo , Melhoramento Vegetal , Locos de Características Quantitativas
5.
Sci Total Environ ; 806(Pt 2): 150451, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607097

RESUMO

Out of the huge quantity of agricultural wastes produced globally, rice straw is one of the most abundant ligno-cellulosic waste. For efficient utilization of these wastes, several cost-effective biological processes are available. The practice of field level in-situ or ex-situ decomposition of rice straw is having less degree of adoption due to its poor decomposition ability within a short time span between rice harvest and sowing of the next crop. Agricultural wastes including rice straw are in general utilized by using lignocellulose degrading microbes for industrial metabolite or compost production. However, bioconversion of crystalline cellulose and lignin present in the waste, into simple molecules is a challenging task. To resolve this issue, researchers have identified a novel new generation microbial enzyme i.e., lytic polysaccharide monooxygenases (LPMOs) and reported that the combination of LPMOs with other glycolytic enzymes are found efficient. This review explains the progress made in LPMOs and their role in lignocellulose bioconversion and the possibility of exploring LPMOs producers for rapid decomposition of agricultural wastes. Also, it provides insights to identify the knowledge gaps in improving the potential of the existing ligno-cellulolytic microbial consortium for efficient utilization of agricultural wastes at industrial and field levels.


Assuntos
Proteínas Fúngicas , Oxigenases de Função Mista , Agricultura , Celulose , Polissacarídeos
6.
Sci Rep ; 11(1): 13563, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193908

RESUMO

To better understand the early response of genotypes to limited-phosphorus (P) conditions and the role of the phosphate transporter OsPHT1 gene family in the presence of PSTOL1, it is essential to characterize the level of tolerance in rice under limited-P conditions. In the present experiment, six rice genotypes were studied in three-way interactions [genotype (G) × phosphorus (P) × duration (D)] by comparing them at two instances (14 d and 28 d) under seven different concentrations of P (0.5‒10.0 ppm) in a hydroponic system. Trait differences and interactions of these traits were clearly distinguished among the various P rates. However, aboveground trait expression registered increased growth from 6.0 to 10.0 ppm of P. The major root-attributed traits in 0.5 ppm of P are significantly increased vis-à-vis 10 ppm of P. Analysis of variance displayed a significant difference between the genotypes for PSTOL1 and PHT1 expression. In low P, maximum root length with a shoot and root dry weight was observed in a new indigenous accession, IC459373, with higher expression of PSTOL1 than in Dular and IR64-Pup1 in 0.5 ppm of P at 14 d. Among the 13 PHT1 genes, OsPT1, OsPT2, OsPT6, and OsPT13 showed significant upregulation in IC459373, Dular, and IR64-Pup1. These results indicated that studying the expression levels of the PSTOL1 and PHT1 gene family at the early growth stages would be helpful in identifying superior donors to improve low-P tolerance and P-use efficiency in rice breeding programs.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Transporte de Fosfato , Fósforo/metabolismo , Proteínas de Plantas , Locos de Características Quantitativas , Perfilação da Expressão Gênica , Genótipo , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Transporte de Fosfato/biossíntese , Proteínas de Transporte de Fosfato/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento
7.
Curr Genomics ; 21(6): 429-443, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33093805

RESUMO

Plant-microbe interactions can be either beneficial or harmful depending on the nature of the interaction. Multifaceted benefits of plant-associated microbes in crops are well documented. Specifically, the management of plant diseases using beneficial microbes is considered to be eco-friendly and the best alternative for sustainable agriculture. Diseases caused by various phytopathogens are responsible for a significant reduction in crop yield and cause substantial economic losses globally. In an ecosystem, there is always an equally daunting challenge for the establishment of disease and development of resistance by pathogens and plants, respectively. In particular, comprehending the complete view of the complex biological systems of plant-pathogen interactions, co-evolution and plant growth promotions (PGP) at both genetic and molecular levels requires novel approaches to decipher the function of genes involved in their interaction. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 (CRISPR-associated protein 9) is a fast, emerging, precise, eco-friendly and efficient tool to address the challenges in agriculture and decipher plant-microbe interaction in crops. Nowadays, the CRISPR/CAS9 approach is receiving major attention in the field of functional genomics and crop improvement. Consequently, the present review updates the prevailing knowledge in the deployment of CRISPR/CAS9 techniques to understand plant-microbe interactions, genes edited for the development of fungal, bacterial and viral disease resistance, to elucidate the nodulation processes, plant growth promotion, and future implications in agriculture. Further, CRISPR/CAS9 would be a new tool for the management of plant diseases and increasing productivity for climate resilience farming.

8.
J Basic Microbiol ; 59(12): 1217-1228, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31613012

RESUMO

Arbuscular mycorrhizal fungi (AMF), particularly the Glomerales group, play a paramount role in plant nutrient uptake, and abiotic and biotic stress management in rice, but recent evidence revealed that elevated CO2 concentration considerably reduces the Glomerales group in soil. In view of this, the present study was initiated to understand the interaction effect of native Glomerales species application in rice plants (cv. Naveen) under elevated CO2 concentrations (400 ± 10, 550 ± 20, and 700 ± 20 ppm) in open-top chambers. Three different modes of application of the AMF inoculum were evaluated, of which, combined application of AMF at the seedling production and transplanting stages showed increased AMF colonization, which significantly improved grain yield by 25.08% and also increased uptake of phosphorus by 18.2% and nitrogen by 49.5%, as observed at 700-ppm CO2 concentration. Organic acids secretion in rice root increased in AMF-inoculated plants exposed to 700-ppm CO2 concentration. To understand the overall effect of CO2 elevation on AMF interaction with the rice plant, principal component and partial least square regression analysis were performed, which found both positive and negative responses under elevated CO2 concentration.


Assuntos
Dióxido de Carbono/farmacologia , Glomeromycota/efeitos dos fármacos , Glomeromycota/fisiologia , Micorrizas/efeitos dos fármacos , Micorrizas/fisiologia , Oryza/microbiologia , Simbiose/efeitos dos fármacos , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Glomeromycota/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Nitrogênio/análise , Nitrogênio/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fósforo/análise , Fósforo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Solo/química , Esporos Fúngicos/fisiologia
9.
J Invertebr Pathol ; 157: 74-79, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30099012

RESUMO

Insect pests in the rice agroecosystem, particularly the leaf folder, Cnaphalocrosis medinalis (Guenee) and stem borer, Sesamia inferens (Walker), cause significant yield losses. These pests are generally managed by farmers by application of insecticides and a few biocontrol agents. As a component of integrated pest management, biocontrol agents play a dynamic role in pest control. Although diverse microbial communities are available in the rice ecosystem, bacterial genera such as Bacillus and Pseudomonas spp. are broadly used as biocontrol agents. Therefore, an attempt was made to identify other effective entomopathogenic bacteria to manage the above mentioned pests. In this study, the two entomopathogenic bacteria isolated from diseased pink stem borer (S. inferens Walker) larvae collected from rice fields were identified as Skermanella sp. (KX611462) and Serratia sp. (KX761232). The larvicidal activity of these two bacteria was evaluated against third instar larvae of C. medinalis and S. inferens in in vitro assays and on potted rice plants (Oryza sativa var. TN1). The results of this study demonstrated 50% (LC50) larval mortality of C. medinalis at 2.95 × 103 and 5.88 × 103 colony forming units (CFU) ml-1 for Skermanella sp. and Serratia sp., respectively, under in vitro conditions, 2.57 × 104 and 3.38 × 104 CFU ml-1, respectively, in whole plant assays. Similarly, the LC50 value for Skermanella sp. was 3.80 × 104 CFU ml-1 and Serratia sp. was 2.29 × 105 CFU ml-1 for S. inferens larvae. Our study reports the larvicidal activity of Skermanella sp. against C. medinalis and S. inferens.


Assuntos
Larva/parasitologia , Mariposas/parasitologia , Controle Biológico de Vetores/métodos , Proteobactérias/patogenicidade , Serratia/patogenicidade , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...